
Advanced Control of Dynamic Facades and HVAC with Reinforcement Learning
based on Standardized Co-simulation

Christoph Gehbauer1∗, Andreas Rippl12, Eleanor S. Lee1

1Lawrence Berkeley National Laboratory
2University of Applied Sciences Technikum Wien

∗Corresponding author. E-mail: cgehbauer@lbl.gov

Abstract

With increased complexity due to time-variable re-
newable electricity supply and associated variable
cost, it has become evident that management of
building energy demand as a resource is essential for
grid stabilization. However, techno-economic and hu-
man constraints make such solutions non-trivial. Re-
inforcement learning (RL), a discipline of machine
learning, was explored to take on this challenge. The
open-source Functional Mock-up Interface - Machine
Learning Center (FMI-MLC) was developed to pro-
vide a standardized interface of RL and simulation
environment, through the FMI industry standard for
co-simulation. RL demonstrated its ability to oper-
ate an electrochromic window and heating, ventila-
tion, and air conditioning system (HVAC), and re-
duce demand during critical periods of the electric
power grid.

Key Innovations

• RL, a discipline of Machine Learning which
trains itself based on emulated and/or real build-
ing response, was applied to grid-interactive dy-
namic facade and HVAC control.

• The FMI industry standard for co-simulation,
which is supported by more than 100 tools, was
implemented into an RL framework to allow
rapid interfacing with third-party building sim-
ulators (e.g., EnergyPlus, Modelica, Radiance).

Practical Implications

This study is a proof-of-concept for control of dy-
namic facades and HVAC through RL. With RL,
the controller is intensively pre-trained across differ-
ent climate zones in simulation, and has the capa-
bility to continue to ”learn” the specific building re-
sponse, once deployed. The FMI-MLC package was
developed as open-source to facilitate this training
process through the FMI industry standard for co-
simulation.

Introduction

With global temperatures projected to rise by up to
3.2 C by 2100, aggressive goals have been set to re-

duce greenhouse gas emissions (GHG) by 45 % over
the next decade and to net zero by 2050 (IPCC, 2018)
and (DOE, 2011). The buildings sector accounts for
20 % of global demand while in the U.S. it accounts
for 40 % of primary energy consumption with 51%
due to heating, ventilation, air-conditioning (HVAC)
and lighting loads (EIA, 2019). Of these end uses, 38
% of total commercial building electricity use and 43
% of demand during weekday peak periods are influ-
enced by windows and the opaque envelope (Harris
et al., 2019). Future building control strategies will
need to consider the interdependency of demand- and
supply-side technologies to minimize energy demand
and associated GHG emissions.

Substantial work is underway worldwide to develop
advanced control strategies. With increased digital-
ization of building systems, model predictive control
(MPC) has become a promising control technique due
to its use of analytical models and ability to optimize
performance over a forecast time horizon (Drgoňa
et al., 2020) and (Gehbauer et al., 2020). However,
critical barriers such as lack of user-accessible mod-
eling, commissioning, and lifetime maintenance tools
will likely hinder widespread deployment. Machine
learning (ML) controllers could reduce these costs
significantly and accelerate deployment of adaptive,
more reliable advanced controllers over the life of the
installation.

In this study, we demonstrate use of an open-source
toolchain to develop a ML controller. The toolchain
is built on tools from the U.S. Department of En-
ergy building energy modeling program portfolio,
which enable advanced control workflows using Mod-
elica and the FMI standard for co-simulation (Wetter
et al., 2015).

The controller uses RL, a technique where a controller
“learns” to map observations to actions based on a
numerical reward given from an environment (Sut-
ton and Barto, 2018). The RL controller is trained
“off-site” which requires less computing power at the
edge device since the computational work of train-
ing the controller is done prior to deployment. Once
deployed, occupant feedback and sensor data can be
used to continue training the controller for the spe-
cific building.

The objective of the RL controller is to actuate dy-
namic facade and HVAC systems to reduce the time-
of-use (TOU) cost of electricity while maintaining oc-
cupant comfort (lighting responds to available day-
light via independent photoelectric controls). Such
control manages energy use based on available sup-
ply, reduces stress on the electric power grid, and
as a result, enables increased adoption of renewable
distributed energy resources. The RL controller was
trained using feedback from a simulated office zone.
The office zone was modeled using physics based mod-
els developed in Modelica and then coupled to the RL
controller through the FMI for co-simulation. FMI
allows the rapid replacement of training models, and
since neither FMI nor RL are domain specific, in the-
ory, the framework could be used for developing any
control strategy based on RL. Several examples are
given to demonstrate feasibility and performance of
the RL controller compared to alternative MPC and
heuristic controllers. The FMI-MLC package1 was
developed in Python, and is available as open-source
on GitHub. The project page includes documenta-
tion on how to link other simulators through FMI
and hosts the examples from this paper.

Methodology

This section outlines (a) the RL algorithm and appli-
cability to controls domain, (b) the FMI that couples
the building emulation model (i.e., training environ-
ment) with the RL algorithm, (c) the building em-
ulation models, and (d) the different controller im-
plementations. The final subsection introduces the
FMI-MLC open-source software package.

Reinforcement Learning

Reinforcement learning is a discipline of ML where
an artificial neural network (ANN) is autonomously
trained based on a system response. Since RL is
agnostic to the underlying physics and free of as-
sumptions, it is highly applicable to many engineering
problems.

The various actor-critic RL methods can be assigned
to the family of off-policy algorithms which are more
efficient regarding training time than on-policy al-
gorithms. Hereby the actor constitutes the actual
RL controller to be trained, and the critic consti-
tutes an abstraction of the system response. In off-
policy algorithms, observations are stored in an ex-
perience buffer and used to sample a small batch to
train the agent. Experiences can be used multiple
times, in contrast to on-policy algorithms where ex-
periences can only be used once. This study uses the
off-policy algorithm based on the Deep Deterministic
Policy Gradient (DDPG) (Lillicrap et al., 2019) with
an improvement of a n-step reward which was estab-
lished with the Distributed Distributional Determin-
istic Policy Gradient (D4PG) (Barth-Maron et al.,

1 https://github.com/LBNL-ETA/FMI-MLC

2018). The n-step reward increases the consideration
of long-term behavior and thus allows one to mini-
mize the peak performance over longer horizons. The
main differences to its predecessor are the continuous
output values of the actor, and the introduction of
target networks to calculate the action values for the
actor and critic networks. The target networks are
duplicates of the actual networks, but updated with
a soft update, where the parameters are multiplied
with a factor lower than one. This leads to an under-
estimation of the action value which in turn stabilizes
the training process.

In this study, both the actor and critic networks are
ANNs. A hyper parameter tuning process suggested
best control results with three hidden layers with a
size of 400 neurons for the first hidden layer and
300 neurons for the following ones for both networks.
The inputs for the actor are the room temperature
as state, and a four hour forecast of the outdoor air
temperature, global horizontal irradiation, computed
zenith angle of the sun, a schedule of occupancy, and
the costs according to the TOU tariff. The outputs
are the control actions for HVAC system and tint
state of the dynamic facade. The critic uses the same
inputs as the actor, but with additional inputs for
the control actions of the actor. The output is the
predicted action value.

Figure 1: Interactions of the Functional Mock-up
Interface - Machine Learning Center (FMI-MLC).
The RL framework orchestrates the actor, critic, and
training environment models. The environment is
coupled through the FMI adapter to a building sim-
ulator (e.g., Modelica, EnergyPlus, etc.).

The training process, illustrated in Figure 1, starts
with an exploration phase (50 episodes in this study)
where actions are based purely on a noise function.
After this phase, the noise starts to decline and ac-
tions from the actor become prevalent (linear decline
rate to 0 at half of training episodes in this study).
At this point the training of the agents is performed
periodically (e.g., every 4 hours of simulation time
in this study). Hereby, the actor interacts with a
training environment, shown as green arrows, to se-
lect actions at for the current states st. The actions
are passed through the FMI to the emulator and new

states are returned the same route. The results are
the next states st+1 and the computed reward rt, de-
termining if the action was a good choice. The en-
vironment response is stored in an experience buffer
for future training iterations, to learn from past ex-
periences. The training environment can be either a
system emulator (i.e., building emulator as used in
this study) or real system response (i.e., monitored
response of a real building), or both. In the training
process of the ANN, shown as orange arrows, the ac-
tion value yt is calculated with the reward rt, sampled
from the buffer and the estimation of the next action-
value yt+1 by the critic with st+1 and at+1 from the
actor as an input. The critic takes the state st and
the actions at as inputs to estimate yt. The actor is
trained, using the estimation of the critic and trying
to change the action at to maximize the output value
of the critic.

The actions of the actor are tightly coupled with the
reward function through the environment response,
and therefore can be trained by maximizing rewards
and minimizing penalties. To avoid convergence to
local optima in the training process, the reward is not
directly passed to the actor model. Instead, the sum
of the immediate reward and the discounted reward
of the next step are used.

The actor is trained based on the achieved reward,
defined in Equations 1 to 3. The reward function rep-
resents the constraints and optimization goals which
are defined by the user. In this implementation, the
reward is calculated as the total costs for energy (cE)
and demand (cD). The costs for energy and demand
are normalized (nE and nD) between zero and one to
facilitate the training process. Since the demand is
charged monthly while energy cost is calculated for
each training horizon (i.e., four hours in this study),
the computed demand cost is scaled by sD (i.e., 30.0
in this study) to match the magnitude of the en-
ergy cost. Penalties (ptemp and ptint) are incurred
when the room temperature (Tr) exceeds the defined
boundaries (Tb), and for activation of the shading sys-
tem at night. The penalties are scaled (stemp and
stint; 2 in this study) to avoid exceeding rewards in
an effort to facilitate the training process.

r = − cE
nE
− cD

nD
∗sD−ptemp ∗stemp−ptint ∗stint (1)

ptemp = min(|Tr − Tb|, 2) (2)

ptint =

{
2 tint < max ∧Qsol = 0

0 otherwise
(3)

The training process is performed for a number of
episodes, until the reward converges and the be-
haviour of the agent is stable. In this study, the

agents were trained between 1,500 to 3,000 episodes,
each lasting for one day with a timestep of one hour.
The length of one day was chosen to encompass vari-
able day- and nighttime conditions, while maintain-
ing consistency of solar loads through the day. Each
episode was initialized with a random selection of
the single day from all available weather data with
the initial room temperature set randomly within the
boundaries.

The Tensorflow and Keras packages in Python are
used to construct the RL algorithm and networks.
Tensorflow is capable of multiprocessing while train-
ing the ANNs with backpropagation, enabling larger
batch sizes to accelerate the training process. Larger
batch sizes also help to establish well trained gener-
alized actors, an objective which is conflicting due to
inherent training process of maximizing the reward.

While in a typical RL setup the environment would
include the mathematical formulation of the system
model (e.g., room model), this study implemented an
interface instead. This interface supports the indus-
try standard FMI and allows rapid replacement of
thermal response models based on emulated or real
building response.

Functional Mock-up Interface

The FMI industry standard (Blochwitz et al., 2012)
describes a standardized application programming in-
terface (API) to export and couple simulation models.
A system of coupled simulation models is referred to
as co-simulation. The simulation model exported in
compliance with FMI is referred to as a functional
mock-up unit (FMU). It contains the files below in a
zip file ending with .fmu:

• An Extensible Markup Language (XML) file de-
scribing parameters, inputs, outputs, and depen-
dencies of the model.

• Compiled C-code with standardized FMI func-
tions to evaluate the model.

• Resource data which can contain additional in-
formation such as documentation, dependency
files that are required by the simulation, graphi-
cal illustrations, or source code.

The FMI standard defines two types of simulation
model export. The co-simulation (CS) export con-
tains the numerical solver, stores internal states, and
provides the integrated result for the next timestep,
i.e., start time plus step size as an output. With CS
the models are forced to advance with a predefined
step size. The model exchange (ME) export con-
tains the system of equations and requires an external
solver. While the external solver requirement imposes
additional dependencies it solves coupled models as a
system, i.e., in a single-pass. CS is often preferred
for single or a low number of models, while ME is
superior for large interconnected systems. Coupled
models can be solved with an orchestrator to coor-

Table 1: Overview of emulators
simple complex

Size 13.9 m2-floor; 5.2 m2-window
Window double-pane electrochromic

Equipment 10.8 W/m2; scheduled
Occupancy 100 W; scheduled

Lighting 5.0 W/m2; dim to 350 lx
HVAC COPcool = 3.5; COPheat = 4.0

Heat balance RC response Modelica
Solar loads simple (SHGC) Modelica

dinate the evaluation of models and interfacing with
a global solver. The orchestrator used in this frame-
work, PyFMI (Andersson et al., 2016), provides the
capability to interface with both model types. How-
ever, all FMUs in this study were exported with the
CS standard which simplifies portability and compa-
rability.

Using the standardized FMI to interface the training
environment with the reinforcement algorithm offers
multiple benefits: (a) leveraging an agreed-upon in-
dustry standard which is well maintained, updated,
and improved by industry stakeholders, (b) the abil-
ity to utilize a large variety of model libraries for dif-
ferent domains that are built and maintained by in-
dustry and research institutions, (c) the flexibility to
couple models of different domains, e.g., thermal heat
balance envelope model with detailed daylight mod-
els to form a single multi-domain co-simulation, (d)
industry developed wrappers for the FMI standard
in different programming languages (e.g., Python,
MATLAB, Modelica, Java) that are well maintained
and documented, and (e) a large community working
on FMI and related standards.

Building Emulation Models

Two building emulation models were developed and
are summarized in Table 1: (a) a simple emulator
based on a simplified Resistance-Capacitance (RC)
model and reduced-order analytical models, and (b)
a complex emulator based on a building physics heat
balance model. Both models were developed in Mod-
elica and interfaced through the FMI. The simple
emulator was used for proof-of-concept and to es-
tablish hyper parameters and forecast horizon of the
RL setup, while the complex emulator was used to
demonstrate applicability on a realistic building re-
sponse.

Both emulators represent a perimeter office with a
floor area of 13.9 m2 and window area of 5.2 m2

(window-to-wall ratio of 33 %). The office was mod-
eled to be adjacent to other offices with indoor sur-
faces modeled as adiabatic. The only surface allow-
ing heat exchange was the exterior, south-facing wall.
The total resistance value (R-value) of the exterior
wall was calculated by applying the U-values (0.32
and 1.6 W/m2-K, respectively) and respective wall-

and window areas. The total capacity of the room was
calculated based on the air volume and an estimation
of effective thermal mass of all surfaces based on EN-
ISO 13786. The exterior wall was modeled as light-
weight construction, ceiling and floor were modeled
with concrete construction and all interior walls were
gypsum wallboard. The total R-value of the room
was 0.085 K/W with a capacitance of 2,029 kJ/K.
The internal loads included scheduled office equip-
ment of 10.8 W/m2 and scheduled occupant thermal
loads of 100 W. The office was occupied from 07:00
to 18:00.

Depending on the controller evaluated, the HVAC
system was either controlled by the heating or cool-
ing output, or could be set to an independent internal
control loop. This internal control loop represent a
Proportional Integral (PI) thermostat control. The
maximum thermal power for heating and cooling was
limited to 75 W/m2. To compute energy use, a re-
versible heat pump system using a fixed coefficient of
performance of 3.5 for cooling and 4.0 for heating was
used.

The dynamic facade was a dual-pane electrochromic
(EC) window. The EC window has four discrete tint
states with a visible transmittance (Tvis) between 60
% (clear), 18 %, 6 %, and 1 % (dark) and solar heat
gain coefficient (SHGC) between 42 % (clear), 16 %,
12 %, and 10 % (dark). In the simple emulator, so-
lar heat gains were calculated using global and dif-
fuse horizontal irradiation, and direct normal irradia-
tion from typical meteorological year (TMY) weather
data, longitude and latitude, and orientation and tilt
of the window. The Tvis and SHGC values given
above for normal incidence were used for the calcula-
tion. In the complex emulator, solar heat gains were
computed using the Modelica window heat balance
model using the actual angle-dependent solar-optical
properties of the EC window.

The lighting system was modeled with an installed
power density of 5.0 W/m2, scheduled occupancy-
based control, and dimming control to maintain an
work plane illuminance (WPI) of 350 lx based on
available daylight. Daylight illuminance was calcu-
lated using daylight factors2 in both the simple and
complex emulators.

Both models used the Pacific Gas and Electricity E-19
TOU electricity tariff (PG&E, 2020) for calculating
energy and demand costs.

Controllers

All controllers were designed to minimize the cost of
energy and demand, and maintain room temperature
and WPI within defined limits through active con-
trol of the EC window and HVAC systems. Within
RL, objectives and constraints are described in a sin-
gle reward function (Equation 1). The RL controller

2https://www.uk-ncm.org.uk/filelibrary/SBEM-Technical-
Manual v5.2.g 20Nov15.pdf

used an external weather and load forecast of 4 h,
and internally predicted another 4 h, which resulted
in a total horizon of 8 h for all cases. The 4 h fore-
cast and 8 h horizon were established through a hy-
per parameter search where it resulted in the optimal
balance between ANN network size and correspond-
ing training time and the optimal control result. A
MPC controller was implemented as a gold-standard
controller with weather, occupancy, internal loads,
RC parameters and the electricity tariff information
that matched the simple emulation model. The opti-
mization goal and constraints of the MPC controller
were the same as for the RL controller, but were for-
mulated as mathematical constraints and objectives,
rather than rewards. The optimization horizon of the
MPC controller was 24 h. Note that the RC parame-
ters of the MPC controller did not match those of the
complex emulation model because building assembly
construction descriptions, not RC values, were mod-
eled in the complex emulated environment. Initial
RC values were based on the the EN-ISO 13786 and
were manually updated to better match the response
of the complex emulator. The MPC controller there-
fore represents a realistic implementation where ex-
act parameters for RC are unknown3. Both, the RL
and MPC controller were evaluated with and with-
out HVAC control. In the case of independent HVAC
control, an internal PI controller was used through
thermostat control. In addition, a simple Heuristic
controller was implemented to represent a typical in-
stallation where EC control was independent from
HVAC control. The Heuristic controller tints the EC
window based on computed incident solar irradiation.

FMI-MLC Package and Code Example

The open-source FMI-MLC package1 is designed to
mask most of the complex interactions through high-
level functions and classes. FMI-MLC was built as a
generic tool to simplify the development of RL con-
trollers by relying on the standardized FMI and Ten-
sorflow’s py environment to link the training environ-
ment. At its current stage of development, any ther-
mal simulator is supported as a training environment
as long as it provides a control signal as input and
temperature response as output. Simulation param-
eters of any type can be set through FMI-MLC and
are passed to the emulator through the FMI. To il-
lustrate the functionality of FMI-MLC, a simple ex-
ample is given to initialize the simple RC model and
RL controller, and to conduct the training process.

The fmi mlc.env extension contains the environment
agent shown in Figure 1, with the FMI adapter to
link to the emulator. The path to the FMU is given
as fmu path. Parameters of the FMU can be modi-
fied through the env par dictionary. The fmi mlc.env
extension also allows the setting of solver options of

3The complex emulation model represents a realistic build-
ing response which can only be approximated with a single RC
network.

the FMU, and variable names of inputs and outputs
to communicate with the environment and further
with the RL framework. The default variable names
(e.g., Q for heat input, T out for outdoor tempera-
ture, T in for resulting indoor temperature) can be
mapped to those of a custom FMU using the par
flag of fmi mlc.env. This mapping is usually the
only alteration needed to link any FMU to the FMI-
MLC package. Similarly, the fmi mlc.wrapper pro-
vides many configuration options to tune hyperpa-
rameters of the learning process and specify agent
network structures. Full documentation is available
through the project site.

Import FMI−MLC package
import fmi mlc
Configure environment
fmu path = ’ fmus/ l i nux /RCmodel . fmu ’
env par = { ’R ’ : 0 . 085 , ’C ’ : 2 .029 e6}
env = fmi mlc . env (env par = env par ,

fmu path = fmu path)
I n i t i a l i z e agents
agents = fmi mlc . wrapper (env = env)
Train agents
agents . t r a i n ()
Print reward
print (agents . ac to r . r e s [’ reward ’])

Results

In order to demonstrate the applicability of RL for
grid-interactive dynamic facade and HVAC control,
two proof-of-concept test cases are given. The first
case compares a RL and Heuristic controller with
MPC to evaluate performance in a hypothetical setup
(i.e., simple emulator). This illustrates a real-world
installation where the RL controller is pre-trained
based on 15 climate zones (i.e., IECC climate zones 1
through 7), and then virtually deployed to a specific
site (in both cases using the simple emulator). The
second case is similar to the first one, but instead uses
a RL controller trained and evaluated on the complex
emulator to illustrate its performance with a realistic
building response. Test cases are evaluated for the
3B coastal climate zone (Los Angeles, CA) using one
sunny day (July 31st) and one cloudy day (July 29th),
and the full month of July.

The FMI-MLC and Tensorflow Python packages are
available for most modern computing platforms. In
this study, off-site pre-training was performed on a
workstation with Intel Xeon W-2145 CPU with 3.70
GHz and 64 GB memory, without GPU acceleration.
Tensorflow was set to use all of the 16 available CPU
cores. Computing power and memory will impact RL
controller training and convergence times. Note that
once the RL controller is trained off-site (i.e., through
simulation), the hardware requirements are much re-
duced where embedded controllers such as a Rasp-

berry Pi4 are sufficient for deployment in a building.

Simple Emulator

The first evaluation provides a comparison between
a RL controller to a perfect information MPC. Note
that a realistic MPC implementation would not have
perfect values for R and C, and therefore would per-
form worse than this technical optimum. Heuristic
control is provided as a state-of-the-art benchmark.
The training dataset included annual TMY weather
data for 15 climate zones. All control strategies were
evaluated with the simple emulator for the 3B coastal
climate. The test days used for evaluation (July
29th and July 31st) were removed from the training
dataset. The monthly evaluation of July consisted of
mainly in-sample weather data, except the removed
days.

Table 2: Results from the simple emulator with RL,
MPC, and Heuristic control in July, climate zone 3B
coastal. Critical demand period from 12:00 to 18:00.

Month Sunny Cloudy
Total Cost [$]

MPC (EC&HVAC) 21.0 10.9 10.3
RL (EC&HVAC) 24.8 14.2 13.9
Heur. (EC only) 27.5 15.4 14.5

T-penalty [Kh]
MPC (EC&HVAC) 0.0 0.0 0.0
RL (EC&HVAC) 0.8 0.1 0.1
Heur. (EC only) 0.0 0.0 0.0

Critical Demand [W]
MPC (EC&HVAC) 268.1 246.8 232.6
RL (EC&HVAC) 304.7 303.6 303.9
Heur. (EC only) 348.5 349.8 330.4

The RL controller was pre-trained with 1,500 episodes
(5,900 ANN updates) before the virtual deployment.
The total training process took 4:24 hours with the
specified hardware. However, the RL controller was
able to maintain the room temperature most of the
time after 200 episodes (total runtime of only 7 min-
utes), with total energy costs equivalent to that of
Heuristic control. The results of the controller evalu-
ation are shown in Table 2.

The total monthly cost of RL control, which includes
energy and demand costs, was 18.1 % higher than the
MPC case. The monthly cost of Heuristic control was
31.0 % higher than the MPC case. While Heuristic
control relied on the independent room thermostat
to keep temperatures within bounds, RL and MPC
were able to actively control the HVAC system while
maintaining acceptable room temperature. In the RL
case, the temperature was slightly out of bounds (i.e.,
about 0.1 K for a single 1 hour timestep) some days
in the late afternoon. The critical demand was cal-
culated as maximal hourly demand during the criti-
cal on-peak period from 12:00 to 18:00. RL control

4https://www.raspberrypi.org/

increased critical demand by 13.7 % in comparison
with the MPC case, but reduced demand by 14.4 %
in comparison with Heuristic control.

Figure 2: Results for RL, MPC, and Heuristic con-
troller with simple emulator on a sunny day in July.

Figure 2 compares the room temperature, HVAC
power, and resulting total electric power consump-
tion between the three control cases. As shown in
the middle plot, the RL controller pre-cools the build-
ing (negative HVAC power reflects thermal cooling of
zone) starting from 04:00, which is 2 hours earlier
than MPC control. Due to the earlier onset of pre-
cooling the RL controller can use less cooling power
in the early morning hours to closely match the tem-
peratures of the MPC case, shown in the upper plot.
While both RL and MPC keep temperatures close
to the lower temperature bound (i.e., heating set-
point) for most of the morning hours, the Heuristic
controller does not control the HVAC system so the
temperature floats with independent thermostat con-
trol until the upper temperature bound (i.e., cooling
setpoint) is reached at 10:00. Starting from 10:00
RL and MPC, on the other hand, slowly release the
thermal mass, effectively reducing the required HVAC
power as indicated by the reduced cooling demand
during afternoon hours. With this strategy, the peak
cooling load for Heuristic control occurs during the
high priced peak period which leads to the highest
costs in this comparison. The lower plot shows the to-
tal electric power demand of the room. This includes
HVAC, internal equipment, and lighting power. At
onset of the high-priced on-peak period, from 12:00 to
18:00 (tariff denoted on the second y-axis in the lower

plot), MPC maintained an optimal constant load of
246.8 W, RL reached a peak demand of 303.9 W,
and Heuristic of 349.8 W, for the sunny day in July.
Mismatch between the RL controller and the simple
emulator caused the RL controller to underestimate
available thermal mass. This was compensated for by
a small heating input in the early morning hours to
avoid a penalty for violating thermal comfort.

Complex Emulator

The second case is similar to the first one, but uses
the complex emulator for both training of the RL con-
troller and evaluation of all cases. Training included
the 15 climate zones. It represents a more realis-
tic implementation where none of the controllers can
achieve the technical optimum. Heuristic was evalu-
ated for EC only control, RL and MPC were evalu-
ated for both, EC only and combined EC and HVAC
control.

Table 3: Results from the complex emulator with RL,
MPC, and Heuristic control (with and without HVAC
control) in July, climate zone 3B coastal. Critical
demand period from 12:00 to 18:00.

Month Sunny Cloudy
Total Cost [$]

RL (EC&HVAC) 29.4 16.9 16.9
MPC (EC&HVAC) 26.9 15.4 14.4
RL (EC only) 27.6 16.0 14.9
MPC (EC only) 27.7 16.2 14.0
Heur. (EC only) 29.1 16.5 14.4

T-penalty [Kh]
RL (EC&HVAC) 3.4 0.5 0.8
MPC (EC&HVAC) 21.7 2.5 0.4
All EC only cases 0.0 0.0 0.0

Critical Demand [W]
RL (EC&HVAC) 381.3 389.0 391.0
MPC (EC&HVAC) 358.2 349.8 320.7
RL (EC only) 386.7 369.9 345.2
MPC (EC only) 390.8 373.2 320.7
Heur. (EC only) 398.5 379.7 329.6

Figure 3 shows a subset of controller cases for the
complex emulator. The RL for EC and HVAC control
(blue) pre-cools the building in the morning hours but
mismatch in the controller leads to overestimation of
thermal mass and increased HVAC load during the
high-priced peak period, from 12:00 to 18:00. Start-
ing from 14:00 thermal mass is released and RL for
EC and HVAC shows lowest HVAC loads. MPC for
EC and HVAC (green) does not utilize pre-cooling
and slowly releases thermal mass through the day.
Model mismatch leads to slight temperature devia-
tion from the cooling setpoint starting at 13:00. How-
ever, this deviation reduces HVAC load and leads to
lowest total electric power consumption. RL for EC
control only (orange) cannot control the HVAC sys-
tem and quickly reaches the cooling setpoint where it

Figure 3: Selected results for RL and MPC controller
with complex emulator for a sunny day in July.

remains for the day.

While the controller with lowest monthly total en-
ergy cost was MPC for EC and HVAC control (Table
3), it resulted in the highest temperature deviations
of about 0.5 K for 4 hours on most days in the after-
noon. The lowest cost without temperature deviation
could be achieved by RL for EC window control only.
Inclusion of HVAC in RL control did not lower cost
as one would expect. Instead, it raised monthly costs
from $ 27.6 to $ 29.4, which is likely due to overfitting
of the RL model. Further adjustments to training
parameters are needed to improve RL estimation of
thermal mass effects. On the other hand, RL for EC
and HVAC control lowered critical demand from 27.8
to 27.4 W/m2, indicating that monthly cost differ-
ences were incurred during non-peak periods. Heuris-
tic control resulted in the highest cost for EC only
cases, with a critical peak demand of 28.7 W/m2.

Discussion

The control of dynamic facades is a challenging prob-
lem considering the interactions with occupant, light-
ing and HVAC systems, and building-level power de-
mand (energy and peak demand charges). Technolo-
gies to optimally balance the control between these
(conflicting) objectives are in development, but typ-
ically require complex commissioning. One example
would be MPC, where the building is internally rep-
resented as a RC thermal model with various inter-
actions with the environment. Setting up such an
RC model is non-trivial and requires data inputs of

thermal and electrical loads. However, a well-trained
MPC controller can achieve a reasonable optimum.
On the other hand, RL has a much reduced commis-
sioning time. The RL is generically pre-trained using
either large datasets from real buildings, or build-
ing emulators with different construction and weather
data, as used in this study. Once a certain perfor-
mance is reached in-silico, the RL controller is ready
to be deployed in any building. While not explored
in this study, the RL controller can continue to learn
and specialize in the specific building deployed.

The RL controller showed very good performance
(i.e., 9.8 % reduced cost and 12.6 % reduced critical
demand in comparison to Heuristic control) with the
simple emulator, and lowest cost for EC only control
with the complex emulator. While those cases were
simplified proof-of-concept implementations with per-
fect knowledge of weather and occupancy forecast,
the feasibility of RL control as a generic controller
for any building (without commissioning) was demon-
strated. Further research will be necessary to thor-
oughly identify the role RL control can play in grid-
interactive building control.

While RL can provide the discussed benefits, it also
struggles with complicated or conflicting objectives,
as indicated by the poorer performance when using
RL for EC and HVAC control, in comparison to EC
control only, in the complex emulator case. We be-
lieve that more specialized models such as Long-Short
Term Memory (LSTM) could be integrated with tra-
ditional ANNs to improve upon that. But in a short
run, the conclusion might be to use this technology
for dynamic facade control only or to implement a
hierarchical structure and define control limits.

Conclusion

Reinforcement learning poses a tremendous poten-
tial for dynamic facade control. An early proof of
concept, where electrochromic windows and HVAC
were controlled to reduce zonal electricity cost, while
maintaining occupant comfort, was demonstrated.
The flexibility of the FMI industry standard for co-
simulation was exploited to rapidly change between
different model setups. With the ever increasing com-
putational resources, it will be possible to develop re-
inforcement learning controllers with more complex
considerations, such as occupant glare constraints
and diverse building types.

Acknowledgment

This work was supported by the Assistant Secretary
for Energy Efficiency and Renewable Energy, Build-
ing Technologies Office, of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.
This work was also supported by the Austrian Mar-
shall Plan Foundation.

References
Andersson, C., J. Åkesson, and C. Führer (2016).

Pyfmi: A python package for simulation of cou-
pled dynamic models with the functional mock-up
interface. Centre for Mathematical Sciences, Lund
University.

Barth-Maron, G., M. W. Hoffman, D. Budden,
W. Dabney, D. Horgan, et al. (2018). Distributed
distributional deterministic policy gradients. arXiv
preprint arXiv:1804.08617 .

Blochwitz, T., M. Otter, J. Akesson, M. Arnold,
C. Clauss, et al. (2012). Functional mockup in-
terface 2.0: The standard for tool independent
exchange of simulation models. In Proceedings
of the 9th International MODELICA Conference;
September 3-5; 2012; Munich; Germany, pp. 173–
184. Linköping University Electronic Press.

DOE (2011). Buildings energy data book. Depart-
ment of Energy .

Drgoňa, J., J. Arroyo, I. C. Figueroa, D. Blum,
K. Arendt, et al. (2020). All you need to know
about model predictive control for buildings. An-
nual Reviews in Control 50, 190 – 232.

EIA (2019). International energy outlook 2019. U.S.
Energy Information Administration.

Gehbauer, C., D. H. Blum, T. Wang, and E. S. Lee
(2020). An assessment of the load modifying poten-
tial of model predictive controlled dynamic facades
within the california context. Energy and Build-
ings 210, 109762.

Harris, C., S. Mumme, M. LaFrance, M. Neukomm,
and K. Sawyer (2019). Grid-interactive efficient
buildings technical report series: Windows and
opaque envelope.

IPCC (2018). Special report on the impacts of global
warming of 1.5 c above pre-industrial levels and
related global greenhouse gas emission pathways.
Intergovernmental Panel on Climate Change.

Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess,
T. Erez, et al. (2019). Continuous control
with deep reinforcement learning. arXiv preprint
arXiv:1509.02971 .

PG&E (2020). Electric schedule e-19 medium gen-
eral demand-metered tou service, effective april 19
2020. Pacific Gas and Electric.

Sutton, R. S. and A. G. Barto (2018). Reinforcement
learning: an introduction. The MIT Press.

Wetter, M., T. S. Nouidui, D. Lorenzetti, E. A. Lee,
and A. Roth (2015). Prototyping the next genera-
tion energyplus simulation engine. In Accepted: 13-
th IBPSA Conference. International Building Per-
formance Simulation Association.

	Abstract
	Key Innovations
	Practical Implications
	Introduction
	Methodology
	Reinforcement Learning
	Functional Mock-up Interface
	Building Emulation Models
	Controllers
	FMI-MLC Package and Code Example

	Results
	Simple Emulator
	Complex Emulator

	Discussion
	Conclusion
	Acknowledgment

